To date, no randomized study has compared different doses of recombinant human granulocyte colony-stimulating factor (rhG-CSF) following submyeloablative mobilization chemotherapy. Therefore, we evaluated the effect of different doses of rhG-CSF following mobilization chemotherapy on yields of CD34+ peripheral blood stem cells (PBSC). Fifty patients were randomized to receive 8 (n = 25) versus 16 microg/kg/d (n = 25) of rhG-CSF following mobilization chemotherapy. The median number of CD34+ cells collected after 8 microg/kg/d of rhG-CSF was 2.36 x 10(6)/kg (range, 0.21-7.80), compared with 7.99 (2.76-14.89) after 16 microg/kg/d (P < 0.001). Twenty out of 25 (80%) patients in the low-dose and 23 out of 25 (92%) in the high-dose rhG-CSF arm underwent high-dose chemotherapy (HDC) and autologous stem cell transplantation (ASCT). Median days to white blood cell engraftment in patients mobilized with 8 microg/kg and 16 microg/kg of rhG-CSF were 12 (10-20) and 9 (8-11) respectively (P < 0.001). There was no difference between the two groups regarding the other parameters of peritransplant morbidity: days to platelet engraftment (P = 0.10), number of red blood cell (P = 0.56) and platelet transfusions (P = 0.22), days of total parenteral nutrition requirement (P = 0.84), fever (P = 0.93) and antibiotics (P = 0.77), and number of different antibiotics used (P = 0.58). These data showed that higher doses of rhG-CSF following submyeloablative mobilization chemotherapy were associated with a clear dose-response effect based on the collected cell yields. Based on the parameters of peritransplant morbidity, 8 microg/kg/d was as effective as 16 microg/kg/d except for a rapid neutrophil engraftment in the high-dose arm. Therefore, in routine clinical practice, despite some advantage in the use of higher doses of rhG-CSF, lower doses may be used for PBSC collections following chemotherapy-based mobilization regimens in this cost-conscious era.