It has been suggested that CFTR Cl(-) channels in the renal inner medullary collecting duct may be involved in mediating increased renal salt excretion during extracellular fluid volume expansion. To investigate this hypothesis, in-vivo clearance experiments were performed comparing wild-type (WT) and DeltaF508-CFTR transgenic mice (cftr (tm2Cam)). Control animals were given a 0.1-ml bolus of 0.9% saline, followed by I.V. infusion at 0.3 ml x h(-1). Volume expansion was applied by infusing a 1-ml bolus of 0.9% saline followed by infusion at 0.6 ml x h(-1). No significant differences in renal NaCl handling between WT mice ( C(Na)=1.2 +/- 0.3 microl x min(-1), C(Cl)=4.0 +/- 0.5 microl x min(-1)) and DeltaF508-CFTR mice ( C(Na)=1.7 +/- 0.5 microl x min(-1), C(Cl)=4.1 +/- 0.8 microl x min(-1)) were observed under control conditions. Volume expansion resulted in large significant increases in NaCl clearance in both WT mice ( C(Na)=7.0 +/- 0.9 microl x min(-1), C(Cl)=12.0 +/- 0.6 microl x min(-1)) and DeltaF508-CFTR mice ( C(Na)=7.2 +/- 1.6 microl x min(-1), C(Cl)=11.0 +/- 2.2 microl x min(-1)). However, there was no significant difference between WT and DeltaF508-CFTR mice. In conclusion, renal NaCl excretion is not significantly different under basal conditions and during saline volume expansion in DeltaF508-CFTR mice. The data suggest that CFTR is not a physiologically important mediator of volume natriuresis.