Previous studies have shown that heme oxygenase-1 (HO-1), a heat stress protein (HSP32), has a beneficial effect on the ischemic myocardium. The purpose of the present study was to explore whether HO-1 is involved in delayed cardioprotection provided by heat stress in vivo. Sprague--Dawley rats were pretreated with whole body hyperthermia (rectal 42 degrees C) for 15 min followed by ischemia-reperfusion 24 h later. Ischemia-reperfusion injury was induced by 45 min of coronary artery occlusion followed by a 3-h reperfusion. Myocardial injury degree was evaluated by measurement of infarct size and serum creatine kinase (CK) activity. The expression of HO-1 mRNA and protein in myocardial tissues were measured. Pretreatment with hyperthemia significantly reduced infarct size and CK release during reperfusion, which was completely blocked by pretreatment with ZnPP-9, an inhibitor of HO and methylene blue, an inhibitor of soluble guanylate cyclase. Heat stress also significantly increased the expression of HO-1 mRNA and protein, and the effect was not affected by pretreatment with methylene blue. The present results suggest that the HO-1 pathway is involved in the mediation of delayed cardioprotection by heat stress in rats.