Apoptosis is a physiological, gene-directed form of cell death aimed at controlling cell proliferation in several biological conditions. It plays a crucial role in modulating tissue growth during embryonic development, cell turnover in adult life, and it seems to be the most frequent mechanism of tumor cell deletion by chemotherapy. Flow cytometry is a widely-used technique for checking apoptosis, permitting a multiparametric analysis. It is possible to follow the alterations occurring in the nucleus, mitochondria and plasmatic membrane during the different apoptotic stages using probes such as LDS-751, JC-1 or Annexin V. The potential of these probes to identify the early or late stages of apoptosis has been widely investigated in cells growing in suspension. In order to assess apoptosis in adherent cells, we tested a combination of fluorescein diacetate (FDA), a substrate for non specific esterase whose activity decreases during the early phase of apoptosis, and trypan blue in MCF-7 human breast cancer cells. Apoptotic cells showed a decrease in the green fluorescence emitted by fluorescein, the product of FDA hydrolysis, whereas necrotic cells emitted a red fluorescence due to the trypan blue staining. FDA-trypan blue double-staining was used to investigate the different kinetics of apoptosis induced by taxol, camptothecin and UV-B irradiation in MCF-7 cells. This method is rapid and simple, and can be used for monitoring the process of apoptosis from early stages in adherent cells, for the physical separation of apoptotic and live cells, and for immunophenotyping, including Fas expression.