Gram-negative infections can cause overwhelming inflammatory responses. Although factors other than LPS are clearly involved, these factors and their mechanisms of action have been poorly defined. During studies of LPS-independent inflammatory responses of the gram-negative pathogen Pseudomonas aeruginosa, an important virulence factor (exoenzyme S) was shown to be a potent mitogen for T cells. The current work demonstrates that exoenzyme S selectively induced transcription and secretion of biologically active cytokines and chemokines (chemotactic for neutrophils and T cells) from monocytes. Exoenzyme S stimulated highly purified monocytes independent of T cells. In addition, exoenzyme S stimulated T cells directly; neither T-cell activation (CD69) nor apoptosis (hypodiploidy) required the presence of monocytes. However, T-cell activation was enhanced via a noncontact-dependent mechanism as a result of the secretion of TNF-alpha and IL-6. This study identifies a unique property of a gram-negative-derived microbial product capable of activating multiple cell types and suggests a mechanism by which exoenzyme S contributes to the immunopathogenesis of cystic fibrosis and sepsis in patients infected with P. aeruginosa.