This paper reviews data on leptin gene expression in adipose tissue (AT) and mammary gland of adult ruminants, as well as on plasma leptin variations, according to genetic, physiological, nutritional and environmental factors. AT leptin mRNA level was higher in sheep and goat subcutaneous than visceral tissues, and the opposite was observed in cattle; it was higher in fat than in lean selection line in sheep; it was decreased by undernutrition and increased by refeeding in cattle and sheep, and not changed by adding soybeans to the diet of lactating goats; it was increased by injection of NPY to sheep, and by GH treatment of growing sheep and cattle. Insulin and glucocorticoids in vitro increased AT leptin mRNA in cattle, and leptin production in sheep. Long daylength increased AT lipogenic activities and leptin mRNA, as well as plasma leptin in sheep. Mammary tissue leptin mRNA level was high during early pregnancy and was lower but still expressed during late pregnancy and lactation in sheep. Leptin was present in sheep mammary adipocytes, epithelial and myoepithelial cells during early pregnancy, late pregnancy and lactation, respectively. Plasma leptin in cattle and sheep was first studied thanks to a commercial "multi-species" kit. It was positively related to body fatness and energy balance or feeding level, and decreased by beta-agonist injection. The recent development of specific RIA for ruminant leptin enabled more quantitative study of changes in plasma leptin concentration, which were explained for 35--50% by body fatness and for 15--20% by feeding level. The response of plasma leptin to meal intake was related positively to glycemia, and negatively to plasma 3-hydroxybutyrate. The putative physiological roles of changes in leptin gene expression are discussed in relation with published data on leptin receptors in several body tissues, and on in vivo or in vitro effects of leptin treatment.