Dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) is a monocyte-derived dendritic cell (MDDC)-specific lectin which participates in dendritic cell (DC) migration and DC-T lymphocyte interactions at the initiation of immune responses and enhances trans-infection of T cells through its HIV gp120-binding ability. The generation of a DC-SIGN-specific mAb has allowed us to determine that the acquisition of DC-SIGN expression during the monocyte-DC differentiation pathway is primarily induced by IL-4, and that GM-CSF cooperates with IL-4 to generate a high level of DC-SIGN mRNA and cell surface expression on immature MDDC. IL-4 was capable of inducing DC-SIGN expression on monocytes without affecting the expression of other MDDC differentiation markers. By contrast, IFN-alpha, IFN-gamma, and TGF-beta were identified as negative regulators of DC-SIGN expression, as they prevented the IL-4-dependent induction of DC-SIGN mRNA on monocytes, and a similar inhibitory effect was exerted by dexamethasone, an inhibitor of the monocyte-MDDC differentiation pathway. The relevance of the inhibitory action of dexamethasone, IFN, and TGF-beta on DC-SIGN expression was emphasized by their ability to inhibit the DC-SIGN-dependent HIV-1 binding to differentiating MDDC. These results demonstrate that DC-SIGN, considered as a MDDC differentiation marker, is a molecule specifically expressed on IL-4-treated monocytes, and whose expression is subjected to a tight regulation by numerous cytokines and growth factors. This feature might help in the development of strategies to modulate the DC-SIGN-dependent cell surface attachment of HIV for therapeutic purposes.