To explore molecular mechanisms of prostate cancer progression, we applied tissue microarrays (TMAs) to analyze expression of candidate gene targets discovered by cDNA microarray analysis of the CWR22 xenograft model system. A TMA with 544 clinical specimens from different stages of disease progression was probed by mRNA in situ hybridization and protein immunohistochemistry. There was an excellent correlation (r = 0.96; n = 16) between the expression levels of the genes in the xenografts by cDNA microarray and mRNA in situ hybridization on a TMA. One of the most highly overexpressed genes in hormone-refractory CWR22R xenografts was the S100P gene. This gene, coding for a calcium signaling molecule implicated in the loss of senescence, was also significantly associated with progression in clinical tumors by TMA analysis (P < 0.001), suggesting dysregulation of this pathway in hormone-refractory and metastatic prostate cancers. Conversely, two genes that were down-regulated during tumor progression in the CWR22 model system were validated in vivo: crystallin mu (CRYM) and a LIM-domain protein LMO4 both showed significantly lower mRNA levels in hormone-refractory tumors as compared with primary tumors (P < 0.001). These results illustrate a strategy for rapid clinical validation at the mRNA and protein level of gene targets found to be differentially expressed in cDNA microarray experiments of model systems of cancer.