Effect of inhibitors of nitric oxide synthase on acetaminophen-induced hepatotoxicity in mice

Nitric Oxide. 2002 Mar;6(2):160-7. doi: 10.1006/niox.2001.0404.

Abstract

We recently reported that following a toxic dose of acetaminophen to mice, tyrosine nitration occurs in the protein of cells that become necrotic. Nitration of tyrosine is by peroxynitrite, a species formed from nitric oxide (NO) and superoxide. In this manuscript we studied the effects of the NO synthase inhibitors N-monomethyl-l-arginine (l-NMMA), N-nitro-l-arginine methyl ester (NAME), l-N-(1-iminoethyl)lysine (l-NIL), and aminoguanidine on acetaminophen hepatotoxicity. Acetaminophen (300 mg/kg) increased serum nitrate/nitrite and alanine aminotransferase (ALT) levels, indicating increased NO synthesis and liver necrosis, respectively. None of the NO synthase inhibitors reduced serum ALT levels. In fact, l-NMMA, l-NIL, and aminoguanidine significantly augmented acetaminophen hepatotoxicity at 4 h. A detailed time course indicated that aminoguanidine (15 mg/kg at 0 h and 15 mg/kg at 2 h) significantly increased serum ALT levels over that for acetaminophen alone at 2 and 4 h; however, at 6 and 8 h serum ALT levels in the two groups were identical. At 2 h following acetaminophen plus aminoguanidine NO synthesis was significantly increased; however, at 4, 6, and 8 h NO synthesis was significantly decreased. Aminoguanidine also decreased acetaminophen-induced nitration of tyrosine. Acetaminophen alone did not induce lipid peroxidation, but acetaminophen plus aminoguanidine significantly increased hepatic lipid peroxidation (malondialdehyde levels) at 2, 4, and 6 h. These data are consistent with NO having a critical role in controlling superoxide-mediated lipid peroxidation in acetaminophen hepatotoxicity. Thus, acetaminophen hepatotoxicity may be mediated by either lipid peroxidation or by peroxynitrite.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetaminophen / toxicity*
  • Alanine Transaminase / blood*
  • Analgesics, Non-Narcotic / toxicity
  • Animals
  • Drug Interactions
  • Enzyme Inhibitors / pharmacology*
  • Guanidines / pharmacology
  • Liver / cytology
  • Liver / drug effects*
  • Lysine / analogs & derivatives*
  • Lysine / pharmacology
  • Male
  • Mice
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / blood
  • Nitric Oxide Synthase / antagonists & inhibitors*
  • Nitric Oxide Synthase / metabolism
  • omega-N-Methylarginine / pharmacology

Substances

  • Analgesics, Non-Narcotic
  • Enzyme Inhibitors
  • Guanidines
  • N(6)-(1-iminoethyl)lysine
  • omega-N-Methylarginine
  • Nitric Oxide
  • Acetaminophen
  • Nitric Oxide Synthase
  • Alanine Transaminase
  • Lysine
  • pimagedine
  • NG-Nitroarginine Methyl Ester