A mathematical and experimental simulation of the hematological response to weightlessness

Acta Astronaut. 1979 Oct;6(10):1289-303. doi: 10.1016/0094-5765(79)90121-8.

Abstract

Two ground-based methods of weightlessness simulation--a computer model of erythropoiesis feedback regulation and bedrest--were used to investigate the mechanisms which lead to loss of red cell mass during spaceflight. Both methods were used to simulate the first Skylab mission of 28 days. Human bedrest subjects lose red cell mass linearly with time and in this study the loss was 6.7% at the end of four weeks (compared to 14% in Skylab). Postbedrest recovery of red cell mass was delayed for two weeks during which time a further decline in this quantity was noted. This is consistent with the first Skylab mission but not with the two longer flights of two and three months. Hemoconcentration, observed early in the study, was essentially maintained despite red cell loss because of continued loss of plasma volume. The computer model, using the time-varying hematocrit data to estimate red cell production rates, predicted dynamic behavior of plasma volume and red cell mass that was in close agreement with the measured values. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. In contrast, the delayed postbedrest recovery of red cell mass was more difficult to explain, especially in the light of enhanced reticulocyte indices observed at the onset on ambulation. Model simulation suggested the possibilities, still to be experimentally demonstrated, that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reductions in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis. The question of whether hemoconcentration is the sole contributor to spaceflight red cell losses also remains to be resolved.

Publication types

  • Comparative Study

MeSH terms

  • Bed Rest*
  • Blood Volume / physiology
  • Erythrocyte Volume / physiology*
  • Erythropoiesis / physiology*
  • Hematocrit
  • Humans
  • Male
  • Models, Biological*
  • Space Flight
  • Weightlessness
  • Weightlessness Simulation*