A number of cyclin-dependent protein kinase (CDK) inhibitors were tested for the ability to protect IPC-81 rat leukemic cells against cAMP-induced apoptosis. A near perfect proportionality was observed between inhibitor potency to protect against cAMP-induced apoptosis and to antagonize CDK5, and to a lesser extent, CDK2 and CDK1. Enforced expression of dominant negative CDK5 (but not CDK1-dn or CDK2-dn) protected against death, indicating that CDK5 activity was necessary for cAMP-induced apoptosis. The CDK inhibitors failed to protect the cells against daunorubicine-, staurosporine-, or okadaic acid-induced apoptosis. The inhibition of CDK5 prevented the cleavage of pro-caspase-3 in cAMP-treated cells. The cells could be saved closer to the moment of their onset of death by inhibitors of caspases than by inhibitors of CDK5. This suggested that the action of CDK5 was upstream of caspase activation. The cAMP treatment resulted in a moderate increase of the level of CDK5 mRNA and protein in IPC-81 wild-type cells. Such cAMP induction of CDK5 was not observed in cells expressing the inducible cAMP early repressor. The cAMP-induced increase of CDK5 contributed to apoptosis since cells overexpressing CDK5-wt were more sensitive for cAMP-induced death. These results demonstrate the first example of a proapoptotic CDK action upstream of caspase activation and of an extra-neuronal effect of CDK5.