The tRNA processing endonuclease ribonuclease P contains an essential and highly conserved RNA molecule (RNase P RNA) that is the catalytic subunit of the enzyme. To identify and characterize functional groups involved in RNase P RNA catalysis, we applied self-cleaving ribozyme-substrate conjugates, on the basis of the RNase P RNA from Escherichia coli, in nucleotide analogue interference mapping (NAIM) and site-specific modification experiments. At high monovalent ion concentrations (3 M) that facilitate protein-independent substrate binding, we find that the ribozyme is largely insensitive to analogue substitution and that concentrations of Mg2+ (1.25 mM) well below that necessary for optimal catalytic rate (>100 mM) are required to produce interference effects because of modification of nucleotide bases. An examination of the pH dependence of the reaction rate at 1.25 mM Mg2+ indicates that the increased sensitivity to analogue interference is not due to a change in the rate-limiting step. The nucleotide positions detected by NAIM under these conditions are located exclusively in the catalytic domain, consistent with the proposed global structure of the ribozyme, and predominantly occur within the highly conserved P1-P4 multihelix junction. Several sensitive positions in J3/4 and J2/4 are proximal to a previously identified site of divalent metal ion binding in the P1-P4 element. Kinetic analysis of ribozymes with site-specific N7-deazaadenosine and deazaguanosine modifications in J3/4 was, in general, consistent with the interference results and also permitted the analysis of sites not accessible by NAIM. These results show that, in this region only, modification of the N7 positions of A62, A65, and A66 resulted in measurable effects on reaction rate and modification at each position displayed distinct sensitivities to Mg2+ concentration. These results reveal a restricted subset of individual functional groups within the catalytic domain that are particularly important for substrate cleavage and demonstrate a close association between catalytic function and metal ion-dependent structure in the highly conserved P1-P4 multihelix junction.