Simulation and parametric study of a film-coated controlled-release pharmaceutical

J Control Release. 2002 Apr 23;80(1-3):229-45. doi: 10.1016/s0168-3659(02)00033-0.

Abstract

Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.

MeSH terms

  • Computer Simulation
  • Delayed-Action Preparations / administration & dosage
  • Delayed-Action Preparations / pharmacokinetics*
  • Drug Implants / administration & dosage
  • Drug Implants / pharmacokinetics*
  • Models, Chemical*
  • Pharmaceutical Preparations / administration & dosage
  • Pharmaceutical Preparations / metabolism*

Substances

  • Delayed-Action Preparations
  • Drug Implants
  • Pharmaceutical Preparations