Malignant melanoma is a tumor that responds poorly to a variety of apoptosis-inducing treatment modalities, such as chemotherapy. The expression of genes that regulate apoptotic cell death plays an important role in determining the sensitivity of tumor cells to chemotherapeutic intervention. Bcl-x(L) is an antiapoptotic member of the Bcl-2 family and is universally expressed in human melanoma. To evaluate the Bcl-x(L) protein as a potential therapeutic target in melanoma, the influence of Bcl-x(L) expression levels on the chemoresistance of human melanoma cells was investigated. Overexpression of Bcl-x(L) in stably transfected human melanoma Mel Juso cells significantly reduced sensitivity to cisplatin-induced apoptosis (p < or = 0.05). In a parallel approach, reduction of Bcl-x(L) protein by specific AS oligonucleotide (ISIS 16009) treatment enhanced the chemosensitivity of Mel Juso cells by 62% compared to cells treated with MM control oligonucleotide (ISIS 16967) as well as chemotherapy-induced apoptosis. These data suggest that Bcl-x(L) is an important factor contributing to the chemoresistance of human melanoma. Reduction of Bcl-x(L) expression by AS oligonucleotides provides a rational and promising approach that may help to overcome chemoresistance in this malignancy.
Copyright 2002 Wiley-Liss, Inc.