SIN-1 (3-morpholinosydnonimine), the active metabolite of the vasodilator drug molsidomine, decomposes spontaneously in solution. In the presence of oxygen, NO* and O(2)(*-) are released, generating peroxynitrite, a potent oxidizing agent, at a constant rate over a 2 h period. We utilized this system to investigate mechanisms of peroxynitrite-induced cytotoxicity, genotoxicity, apoptosis, and mitochondrial damage in two human lymphoblastoid cell lines carrying either wild-type (TK6 cells) or mutant p53 (WTK-1 cells) genes. Treatment of TK6 cells with 5 mM SIN-1 for 1.5 h resulted in 28 +/- 6% survival 24 h later. Exposure in the presence of different radical scavengers significantly increased survival, as follows: cytochrome c, 96 +/- 3%; Tiron, 69 +/- 0%; SOD plus catalase, 83 +/- 5%; carboxy-PTIO, 87 +/- 3%; and uric acid, 87 +/- 2%. D-mannitol was ineffective in reducing lethality, as were SOD and catalase when added individually or in heat-inactivated form. Spontaneous as well as SIN-1-induced mutant fractions (MF) in both HPRT and TK genes were significantly higher in WTK-1 cells than in TK6 cells (p < 0.05-0.01). Exposure to 2.5 mM SIN-1 induced time-dependent apoptosis in TK6 cells, but not in WTK-1 cells. Mitochondrial membrane depolarization was also observed in both cell lines after SIN-1 treatment. Neutral comet assay demonstrated that SIN-1 treatment resulted in higher levels of DNA double-strand breaks in TK6 cells than in WTK-1 cells. Collectively, these data show that SIN-1 can be used as an effective peroxynitrite generator in cell culture experiments under these experimental conditions, in which it induced a greater apoptotic response but was less potent as a mutagen in TK6 cells compared with WTK-1 cells. Thus, p53 status was an important determinant of SIN-1 induced mutagenesis and apoptosis in these two human lymphoblastoid cell lines.