A new class of hydrogen-bonded ladders based on hydrogen-bonded dimerization of oligo-alpha-aminopryidines has been demonstrated. Jorgensen's model can be successfully applied to this hydrogen-bonding system in nonpolar solvents. The results show the competitive enthalpy/entropy compensation relationship upon dimerization. Although increasing the number of hydrogen-bonding interactions would enhance the hydrogen-bonding stabilization enthalpy, this stabilization enthalpy per unit would be partially sacrificed to compensate for the entropy loss due to dimerization. These results clearly support the importance of preorganization in designing hydrogen-bonding guest-host molecules.