This study was conducted to determine whether the contributions of epidermal growth factor (EGF) to gastric mucosal restitution after injury are mediated by stimulation of Na(+)/H(+) exchangers in surface mucous cells (SMC). Intact sheets of guinea pig gastric mucosae were incubated in vitro. Intracellular pH (pH(i)) in SMC was measured fluorometrically, using 2',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Restitution after Triton X-100-induced injury was evaluated by recovery of electrical resistance. At neutral luminal pH, exogenous EGF (ex-EGF) increased pH(i) and enhanced restitution in the absence but not in the presence of serosal HCO. During exposure to luminal acid, ex-EGF not only prevented intracellular acidosis but also promoted restitution. These effects of ex-EGF were blocked by serosal amiloride or anti-EGF-receptor antibody. In the absence of ex-EGF, restitution was inhibited by replacement of luminal and serosal solutions with fresh solutions and was blocked more completely by serosal anti-EGF-receptor antibody. These results suggest that both endogenous and ex-EGF contribute to restitution via basolateral EGF receptors, with effects mediated, at least in part, by stimulation of basolateral Na(+)/H(+) exchangers.