TACE/ADAM17-TNF-alpha pathway in rat cortical cultures after exposure to oxygen-glucose deprivation or glutamate

J Cereb Blood Flow Metab. 2002 May;22(5):576-85. doi: 10.1097/00004647-200205000-00009.

Abstract

The role of the tumor necrosis factor (TNF)-alpha convertase (TACE/ADAM17) in the adult nervous system remains poorly understood. The authors have previously demonstrated that TACE is upregulated in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). They have now used rat mixed cortical cultures exposed to OGD or glutamate to study (1) TACE expression and localization, and (2) the effects of TNF-alpha release on cell viability. OGD-or glutamate-caused TNF-alpha release, an effect that was blocked by the TACE inhibitor BB3103 (BB) (0.1-1 micromol/L; control: 1.67 +/- 0.59; OGD: 6.59 +/- 1.52; glutamate: 3.38 +/- 0.66; OGD +/- BB0.1: 3.23 +/- 0.67; OGD +/- BB1: 1.33 +/- 0.22 pg/mL, n = 6, P < 0.05). Assay of TACE activity as well as Western blot showed that TACE expression is increased in OGD-or glutamate-exposed cells. In control cultures, TACE immunoreactivity was present in some microglial cells, whereas, after OGD or glutamate, TACE immunostaining appeared in most microglial cells and in some astrocytes. Conversely, BB3103 (0.1 micromol/L) caused apoptosis after glutamate exposure as shown by annexin and Hoechst 33342 staining and caspase-3 activity, an effect mimicked by the proteasome inhibitor MG-132 (caspase activity: glutamate: 5.1 +/- 0.1; glutamate + BB: 7.8 +/- 0.8; glutamate + MG: 11.9 +/- 0.5 pmol. min(-1) mg(-1) protein, n = 4, P < 0.05), suggesting that translocation of the transcription factor NF-kappaB mediates TNF-alpha-induced antiapoptotic effect. Taken together, these data demonstrate that, in rat mixed neuronal-glial cortical cultures exposed to OGD or glutamate, (1) TACE/ADAM17 activity accounts for the majority of TNF-alpha shedding, (2) an increase in glial TACE expression contributes to the rise in TNF-alpha, and (3) TNF-alpha release in this setting inhibits apoptosis via activation of the transcription factor NF-kappaB.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ADAM Proteins
  • ADAM17 Protein
  • Animals
  • Apoptosis
  • Blotting, Western
  • Cells, Cultured
  • Cerebral Cortex / cytology
  • Cerebral Cortex / drug effects
  • Cerebral Cortex / metabolism*
  • Cycloheximide / pharmacology
  • Embryo, Mammalian
  • Enzyme Inhibitors / pharmacology
  • Fluorescein
  • Fluorescent Antibody Technique
  • Fluorescent Dyes
  • Glucose / administration & dosage*
  • Glutamic Acid / pharmacology*
  • Hydroxamic Acids / pharmacology
  • Metalloendopeptidases / analysis
  • Metalloendopeptidases / antagonists & inhibitors
  • Metalloendopeptidases / metabolism*
  • NF-kappa B / metabolism
  • Oxygen / administration & dosage*
  • Peptide Fragments / metabolism
  • Protein Synthesis Inhibitors / pharmacology
  • Rats
  • Rats, Wistar
  • Tumor Necrosis Factor-alpha / metabolism*

Substances

  • BB 3103
  • Enzyme Inhibitors
  • Fluorescent Dyes
  • Hydroxamic Acids
  • NF-kappa B
  • Peptide Fragments
  • Protein Synthesis Inhibitors
  • Tumor Necrosis Factor-alpha
  • Glutamic Acid
  • Cycloheximide
  • ADAM Proteins
  • Metalloendopeptidases
  • ADAM17 Protein
  • Adam17 protein, rat
  • Glucose
  • Oxygen
  • Fluorescein