Functional reconstitution of endothelial nitric oxide synthase reveals the importance of serine 1179 in endothelium-dependent vasomotion

Circ Res. 2002 May 3;90(8):904-10. doi: 10.1161/01.res.0000016506.04193.96.

Abstract

Phosphorylation of endothelial nitric oxide synthase (eNOS) at serine 1179 can activate the enzyme, leading to NO release. Because eNOS is important in regulating vascular tone, we investigated whether phosphorylation of this residue is involved in vasomotion. Adenoviral transduction of endothelial cells (ECs) with the phosphomimetic S1179DeNOS markedly increased basal and vascular endothelial cell growth factor (VEGF)-stimulated NO release compared with cells transduced with wild-type virus. Conversely, adenoviral transduction of ECs with the non-phosphorylatable S1179AeNOS suppressed basal and stimulated NO release. Using a novel method for luminal delivery of adenovirus, transduction of the endothelium of carotid arteries from eNOS knockout mice with S1179DeNOS completely restored NO-mediated dilatation to acetylcholine (ACh), whereas vasomotor responses in arteries transduced with S1179AeNOS were significantly attenuated. Basal NO release was also significantly reduced in arteries transduced with S1179AeNOS, compared with S1179DeNOS. Thus, our data directly demonstrate that phosphorylation of eNOS at serine 1179 is an important regulator of basal and stimulated NO release in ECs and in intact blood vessels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylcholine / pharmacology
  • Adenoviridae / genetics
  • Animals
  • Carotid Arteries / drug effects
  • Carotid Arteries / enzymology
  • Carotid Arteries / physiology
  • Cattle
  • Cells, Cultured
  • Culture Techniques
  • Endothelial Growth Factors / pharmacology
  • Endothelium, Vascular / physiology*
  • Genetic Vectors
  • Lymphokines / pharmacology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mutation
  • Nitric Oxide / biosynthesis
  • Nitric Oxide Synthase / chemistry*
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase / physiology*
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Phosphorylation
  • Pressure
  • Serine / genetics
  • Serine / physiology*
  • Transduction, Genetic
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Vasodilation* / drug effects
  • Vasodilator Agents / pharmacology

Substances

  • Endothelial Growth Factors
  • Lymphokines
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Vasodilator Agents
  • Nitric Oxide
  • Serine
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos3 protein, mouse
  • Acetylcholine