The purpose of the present study was to examine the changes in maximum voluntary isometric contraction (MVC) in the contralateral untrained limb during unilateral resistance training and detraining, and to examine the factors inducing these changes by means of electrophysiological techniques. Nine healthy males trained their plantar flexor muscles unilaterally 4 day-s x week(-1) for 6 weeks using 3 sets of 10-12 repetitions at 70-75% of one-repetition maximum a day, and detrained for 6 weeks. Progressive unilateral resistance training significantly (P < 0.05) increased MVC, integrated electromyogram (iEMG), and voluntary activation in the trained and contralateral untrained limbs. The changes in MVC after training were significantly correlated with the changes in iEMG in both limbs. No significant changes occurred in MVC, voluntary activation, and iEMG in the contralateral limb after detraining. The changes in MVC after detraining did not correlate with the changes in voluntary activation or iEMG in either limb. Training and detraining did not alter twitch and tetanic peak torques in either limb. These results suggest that the mechanisms underlying cross education of muscular strength may be explained by central neural factors during training, but not solely so during detraining.