We present a new method for imaging surface phonon focusing and dispersion at frequencies up to 1 GHz that makes use of ultrafast optical excitation and detection. Animations of coherent surface phonon wave packets emanating from a point source on isotropic and anisotropic solids are obtained with micron lateral resolution. We resolve rounded-square shaped wave fronts on the (100) plane of LiF and discover isolated pockets of pseudosurface wave propagation with exceptionally high group velocity in the (001) plane of TeO(2). Surface phonon refraction and concentration in a minute gold pyramid is also revealed.