Carboplatin, a drug widely used against solid head and neck tumors, selectively destroys cochlear inner hair cells and type I auditory nerve fibers in chinchilla. This should affect neurotransmitter chemistry, involving amino acids, where the type I auditory nerve fibers terminate in the cochlear nucleus. Using microdissection combined with high-performance liquid chromatography, amino acid concentrations were mapped in the cochlear nuclei of chinchillas injected intraperitoneally 6-8 weeks earlier with 100 mg/kg carboplatin and in those of control animals. Glutamate concentrations were 23% lower in the anteroventral cochlear nucleus (AVCN) and 40% lower in the posteroventral cochlear nucleus (PVCN) of carboplatin-injected chinchillas as compared to controls, while aspartate concentrations were 18% lower in AVCN and 27% lower in PVCN. Using a fluorometric assay, activities of glutaminase, an enzyme which catalyzes glutamate synthesis, were 30% lower in AVCN and 38% lower in PVCN of carboplatin-injected chinchillas. Concentrations of glutamine, gamma-aminobutyrate, and glycine were also lower in some ventral and dorsal cochlear nucleus regions of treated animals. These changes probably result mainly from both primary and later effects of reduced type I auditory nerve fiber input to the cochlear nucleus.