Multiorgan failure is a life threatening complication in patients with ischemic acute renal failure (ARF). However, little is known about the underlying multiorgan system cellular immunity in ischemic ARF. We therefore studied the dynamics of cells accumulating in the kidneys and other organs in mice and analyzed the characteristics of the accumulated cells. We prepared a unilateral renal ischemia/reperfusion injury (IRI) model in C57BL/6 or C3H/He mice. At 1 to 3 hours after renal ischemia, increased accumulations of neutrophils and intermediate T cells were observed in the clamped kidney, but the same phenomena were also observed in the nonclamped kidney, liver, and spleen. After 24 hours, these cell numbers had returned to preischemic levels, but remained elevated for a longer period in the clamped kidney. The intermediate T cells that accumulated in the kidney and liver in the IRI mice expressed higher Vbeta chains specific to forbidden clones than in the control mice. Moreover, the accumulated intermediate T cells in the IRI liver had cytotoxic activity against both tumor cells and syngeneic thymocytes. In the clamped kidney, the accumulated intermediate T cells had less cytotoxic activity against tumor cells; however, the expression of the Fas ligand (FasL) increased, indicating a cell-mediated tissue injury via the Fas/FasL system. Histopathologically, an influx of neutrophils and lymphocytes was observed not only in the clamped kidney but also in the hepatic sinusoids concomitantly with liver dysfunction. These findings indicate that a systemic cellular immune response, including intermediate T cells, affects multiple organs during ischemic ARF, which may play an important role in the development of multiorgan failure.