Regulatory interactions between the endoplasmic reticulum (ER) and the mitochondria in the control of intracellular free Ca2+ concentration ([Ca2+]I), may be of importance in the control of many cell functions, and particularly those involved in initiating cell death. We used targeted Ca2+ sensors (cameleons) to investigate the movement of Ca2+ between the ER and mitochondria of intact cells and focused on the role of the mitochondrial permeability transition (MPT) in this interaction. We hypothesized that release of Ca2+ from mitochondria in response to a known MPT agonist (atractyloside) would cause release of ER Ca2+, perpetuating cellular Ca2+ overload, and cell death. Targeted cameleons (mitochondria and ER) were imaged with confocal microscopy 2-3 days following transient transfection of human embryonic kidney 293 cells. Opening of the MPT resulted in specific loss of mitochondrial Ca2+ (blocked by cyclosporin A), which was sequestered initially by ER. The ER subsequently released this Ca2+ load, leading to a global Ca2+ elevation, a response that was not observed when ER Ca2+-ATPases were blocked with cyclopiazonic acid. Thus, ER plays an important role in moderating changes in intracellular Ca2+ following MPT and may play a key role in cell death initiated by mitochondrial mechanisms.