We previously reported that quercetin, a bioflavonoid belonging to polyphenols, inhibited Angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) hypertrophy through the inhibition of c-Jun N-terminal kinase (JNK) activation. However, we recently found that orally administered quercetin appeared in plasma as glucuronide-conjugated forms in rats and humans. Therefore we examined the effect of chemically synthesized quercetin glucuronide on Ang II-induced mitogen-activated protein (MAP) kinase activation and hypertrophy of cultured rat aortic smooth muscle cells (RASMC). Ang II activated extracellular signal-regulated kinase (ERK)1/2, JNK, and p38 in RASMC. Ang II-induced JNK activation was inhibited by quercetin 3-O-beta-d-glucuronide (Q3GA) whereas ERK1/2 and p38 activations were not affected. Q3GA scavenged 1,1-diphenyl-2-picrylhydrazyl radical measured by a method of electron paramagnetic resonance. Q3GA also inhibited Ang II-induced increases in activator protein-1 (AP-1) DNA binding, a downstream transcription factor of JNK. Finally, Ang II-induced [3H]leucine incorporation into RASMC was abolished by Q3GA. These findings suggest that the preventing effect of Q3GA on Ang II-induced VSMC hypertrophy is attributable in part to its inhibitory effect on JNK and the AP-1 signaling pathway. Q3GA would be an active metabolite of quercetin in plasma and may possess a preventing effect for cardiovascular diseases relevant to VSMC growth.