We have investigated the expression of TASK-1, a pH-sensitive, twin-pore domain K(+) channel in the rat heart. A mammalian cell line of Chinese hamster ovary cells (CHO), transfected with a plasmid containing mouse TASK-1, demonstrated the specificity of the anti-TASK-1 antibody. TASK-1 expression in cardiac tissue was initially demonstrated by Western blot and then localized by immunofluorescence. In single rat ventricular myocytes, strong staining of the TASK-1 protein was located at the intercalated disks and across the cell in a striated pattern, corresponding to the transverse axial tubular network (T tubules). In contrast, single rat atrial myocytes were stained at the intercalated disks with a weak punctate, striated pattern corresponding to underdeveloped T tubules. Also, formamide was used to induce the detubulation of ventricular myocytes, which enabled confirmation that TASK-1 protein expression occurs in T tubules. Consistent with this, RT-PCR revealed the expression of TASK-1 mRNA in total RNA from both the ventricles and atria. In this study, we conclusively demonstrated that TASK-1 protein and mRNA were expressed in rat atrial and ventricular tissue. The extensive distribution of TASK-1 shown to exist within myocyte membranes may provide a potential future target for antiarrhythmic drugs.