Previous studies with McA-RH7777 cells showed a 15-20-min temporal delay in the oleate treatment-induced assembly of very low density lipoproteins (VLDL) after apolipoprotein (apo) B100 translation, suggesting a post-translational process. Here, we determined whether the post-translational assembly of apoB100-VLDL occurred within the endoplasmic reticulum (ER) or in post-ER compartments using biochemical and microscopic techniques. At steady state, apoB100 distributed throughout ER and Golgi, which were fractionated by Nycodenz gradient centrifugation. Pulse-chase experiments showed that it took about 20 min for newly synthesized apoB100 to exit the ER and to accumulate in the cis/medial Golgi. At the end of a subsequent 20-min chase, a small fraction of apoB100 accumulated in the distal Golgi, and a large amount of apoB100 was secreted into the medium as VLDL. VLDL was not detected either in the lumen of ER or in that of cis/medial Golgi where apoB100 was membrane-associated and sensitive to endoglycosidase H treatment. In contrast, VLDL particles were found in the lumen of the distal Golgi where apoB100 was resistant to endoglycosidase H. Formation of lumenal VLDL almost coincided with the appearance of VLDL in the medium, suggesting that the site of VLDL assembly is proximal to the site of secretion. When microsomal triglyceride transfer protein activity was inactivated after apoB had exited the ER, VLDL formation in the distal Golgi and its subsequent secretion was unaffected. Lipid analysis by tandem mass spectrometry showed that oleate treatment increased the masses of membrane phosphatidylcholine (by 68%) and phosphatidylethanolamine (by 27%) and altered the membrane phospholipid profiles of ER and Golgi. Taken together, these results suggest that VLDL assembly in McA-RH7777 cells takes place in compartments at the distal end of the secretory pathway.