In tissue culture, rat pheochromocytoma (PC12) cells differentiated with nerve growth factor (NGF) cease division, extend neuritic processes and acquire many properties characteristic of neuronal cells. In previous work, we have shown that NGF-differentiated PC12 cells can survive infection with herpes simplex virus type 1 (HSV-1) and maintain the viral genome in a quiescent but reactivatable state. In this study, we report that uninfected NGF-differentiated PC12 cells uniformly and predictably detach from the culture flask substratum after approximately 7 weeks. Although uninfected cells were uniformly lost from the culture by 7 weeks, surprisingly HSV-1-infected cells survived beyond 10 weeks, the time limit of the study. The detachment of uninfected cells was not the result of cell death or apoptosis, as determined by viability assays performed on cells after detachment. Expression of the HSV-1 latency associated transcript (LAT) gene and virus replication was not necessary for the virus to suppress the 'detachment' phenomenon, since NGF-differentiated PC12 cells infected with either wild-type, DNA polymerase mutant or LAT null mutant virus survived in culture for similar lengths of time. Viral gene expression does appear to be necessary for the suppression, however, since cells infected with UV-inactivated virus were lost from culture with kinetics similar to those of uninfected cells. These findings indicate that de novo viral gene synthesis mediates changes to the host NGF-differentiated PC12 cells, which results in prevention of detachment.