VP39 is a vaccinia virus-encoded RNA modifying protein with roles in the modification of both mRNA ends. At the 3' end it acts as a processivity factor for the vaccinia poly(A) polymerase (VP55), promoting poly(A) tail elongation. Despite VP39's three-dimensional structure having been elucidated along with details of its mode of mRNA 5' end binding, the VP39-VP55 heterodimer's molecular mechanism of processivity is largely unknown. Here, the area immediately above almost the entire surface of the VP39 subunit was probed using chemical reporters, and the path of a previously unidentified RNA binding site was revealed. The path was indicated to fall within a cleft formed by the intersubunit interface and was consistent with both a previously reported model of the heterodimer-nucleic acid ternary complex and the known function of the heterodimer in processive poly(A) tail elongation.