Purpose: To determine the effects of reattachment on the molecular and cellular events initiated by a retinal detachment lasting 1 hour or 1 day.
Methods: Experimental retinal detachments were created in the right eyes of nine cats. Reattachments were performed 1 hour (n = 3) or 1 day (n = 3) after the detachment, and the animals were killed 3 days after detachment. Three-day detached (n = 3) and normal (n = 3) retinas were used for comparisons. Agarose-embedded sections were double labeled with a panel of antibodies. Some sections were also probed with the TUNEL technique to detect apoptotic cells. Wax-embedded sections were labeled with the MIB-1 antibody to the Ki67 protein to detect proliferating cells.
Results: The 1-hour and 1-day detachments followed by reattachment showed a very similar and consistent reduction in photoreceptor deconstruction and the Müller cell gliotic response when compared with 3-day retinal detachments without reattachment. Light microscopy and immunolabeling with opsin antibodies showed a significant reduction in both rod and cone outer segment (OS) degeneration, even though OS length was shorter than normal. The reattachments also showed a reduction in opsin redistribution, retraction of rod terminals, TUNEL-labeled photoreceptors, loss of cytochrome oxidase staining in photoreceptors, neurite outgrowth from second-order neurons, the number of proliferating cells, and the increase in intermediate filaments and loss of soluble proteins from Müller cells. The apparent re-ensheathing of the OS by the apical processes of the retinal pigment epithelium had begun but was not completely normal.
Conclusions: These data indicate that, even though the length of the OS is less than normal, retinal reattachment within 1 day of detachment can either greatly retard or reverse many of the molecular and cellular changes initiated by detachment.