To determine the accuracy of HRCT in assessing histology by objective morphometric index, twenty-five biopsy specimen-proved UIP were correlated with high-resolution CT (HRCT) by morphometric analysis. The scans were evaluated for the presence and extent of normal parenchyma, ground-glass attenuation, linear opacities, consolidation, honeycombing, vessels and bronchiectasis, and overall extent of histology involvement for normal parenchyma, honeycombing, alveolar septal inflammation, fibrosis, vessels, and bronchiectasis/bronchiolectasis. The comparison between morphometric measurements showed a strong correlation between HRCT and histologic parameters for extension (%) of normal tissue (p = 5 x 10(-5)), honeycombing (p = 6 x 10(-5)), and vessels (p = 0.0047). HRCT consolidation strongly correlated with alveolar septal inflammation (p = 0.015), whereas HRCT linear opacities had the highest correlation with histology for bronchiectasis or bronchiolectasis (p = 0.03). These associations also demonstrated that there was considerable residual scatter about the linear relationships found. By contrast, neither the ground glass patterns nor the bronchioectatic patterns determined by CT were associated with any histologic observation (p < 0.1). There was a borderline negative relationship between vessels determined by CT and histologic fibrosis (p = 0.069), i.e., the percentage of vessel patterns determined by CT was found to be lower when fibrosis was prominent histologically. Our results showed that HRCT patterns, usually employed to provide information about activity (ground glass) and fibrosis (consolidation) in IPF, failed to correlate with histology. On the other hand, chronic cystic lesions had a good correlation with histology. This finding suggests that in patients without a diffuse honeycomb pattern on HRCT, a lung biopsy may provide additional information. The more important limitation of our study was the lack of correlation related to the proximity of the biopsy site to the HRCT location evaluated by morphometry.