Megakaryopoiesis and subsequent thrombopoiesis occur through complex biologic steps: megakaryocyte precursors that developed from hematopoietic stem cells initially proliferate, then differentiate into mature polyploid megakaryocytes, and finally release platelets. Although a number of growth factors can augment megakaryopoiesis in vitro, thrombopoietin is a physiologic and the most potent regulator of megakaryopoiesis in vitro and in vivo. Thrombopoietin induces the growth of megakaryocyte precursors through activation of multiple signaling cascades, including Ras/mitogen-activated protein kinase (MAPK), signal transducers and activators of transcription 5 (STAT5), phosphatidylinositol 3-kinase (PI3-K)/Akt, and protein kinase C, whereas it induces megakaryocytic maturation primarily through the Ras/MAPK pathway. During the maturation step, megakaryocytes undergo polyploidization characterized by repeated rounds of DNA replication without concomitant cell division. During these rounds of replication, cytokinesis is neglected because of the down-regulated expression of AIM-1, and DNA replication occurs through the increased expression of D-type cyclins. As for transcriptional regulation during megakaryopoiesis, GATA-1 plays a central role in the lineage commitment of hematopoietic stem cells toward erythroid/megakaryocytic lineage and subsequent maturation. p45 NF-E2 is essential for platelet release from terminally differentiated megakaryocytes. At present, mutations of GATA-1, AML1, and HOXA11 genes have been found in hereditary diseases accompanying thrombocytopenia among humans.