We formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. The model describes well a large amount of different data within a simple theoretical framework. This allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.
(c) 2002 Elsevier Science Ltd.