The efficacy of bacillus Calmette Guerin (BCG) as a vaccine against tuberculosis is adversely affected by both genetic and environmental factors on the immune system. In this study we have demonstrated that a recombinant BCG (rBCG) secreting biologically active IL-2 has the ability to induce a T(h)1 profile in both immunocompromised and in IL-4 transgenic (Tg) mice. Dexamethasone (DXM) was administered orally to mice prior to vaccination with either rBCG or normal BCG (nBCG). Six weeks post-vaccination with rBCG, splenocytes from DXM-treated mice exhibited a strong antigen-specific proliferative response, while also secreting large amounts of IFN-gamma and low levels of IgG1. The opposite profile occurred when DXM-treated mice were vaccinated with nBCG. Splenocytes from these mice showed no significant proliferation and produced a cytokine profile associated with a T(h)2 immune response, in addition to exhibiting high levels of serum IgG1. In the IL-4 Tg model, mice vaccinated with rBCG again produced a strong T(h)1 immune response, exhibiting a high antigen-specific IFN-gamma:IL-4 ratio and a concomitantly high IgG2a:IgG1 ratio. IL-4 Tg mice vaccinated with nBCG produced the opposite profile. These findings suggest that BCG can be made more robust by incorporating immunopotentiating cytokines into the vaccine.