Expression and regulation of the macrophage inflammatory protein-1 alpha gene by nicotine in rat alveolar macrophages

Eur Cytokine Netw. 2002 Apr-Jun;13(2):242-9.

Abstract

Cigarette smoking causes inflammation mainly confined to the airway and lung. Nicotine is one of the primary constituents in cigarette smoke. Alveolar macrophages apparently play a pivotal role in mediating pulmonary inflammation via the production of chemokines. Macrophage inflammatory protein-1 alpha (MIP-1 alpha), a member of CC chemokines, has been shown to contribute to monocyte/macrophage and neutrophil chemotaxis and activation. Our previous work demonstrated that MIP-1 alpha mRNA expression in macrophages is induced by a variety of stimuli. In the present study, we further investigate whether nicotine can regulate the gene expression of MIP-1 alpha in macrophages and determine the mechanism leading to increased expression. A rat alveolar macrophage (RAM) cell line, NR8383, was treated with nicotine at a dose of 3.1, 31, 310 microM, or 3.1 mM. Northern blot analysis showed that the induction of MIP-1 alpha mRNA expression was dose-dependent. To define the time course of the inflammatory response, RAM cells were exposed to 31 microM nicotine, MIP-1 alpha mRNA was induced as early as 1 h after treatment, was maximally expressed at 4 and 6 hours, and reduced by 8 hours. Western blot analysis demonstrated a single band with an estimated molecular weight of 10 kD for MIP-1 alpha which was induced after nicotine treatment, suggesting that expression of MIP-1 alpha mRNA could reflect in protein synthesis. In addition. the increase in MIP-1 alpha mRNA expression induced by nicotine was attenuated by co-treatment with the antioxidant N-acetylcysteine (NAC), at doses of 10 and 20 mM, suggesting that the induction of MIP-1 alpha mRNA is mediated via the generation of reactive oxygen species (ROS). To further investigate transcriptional regulation of the MIP-1 alpha gene expression, RAM cells were exposed to nicotine. MIP-1 alpha mRNA levels were significantly increased in nuclear RNA preparations, indicating that transcriptional activation is involved in increased expression of MIP-1 alpha mRNA. Moreover, we performed RNA decay assay by measuring the half-life of MIP-1 alpha mRNA. Treatment of RAM cells with the transcriptional inhibitor actinomycin D following exposure to nicotine revealed that the half-life of MIP-1 alpha mRNA was markedly increased by nicotine treatment, supporting a role of post-transcriptional stabilization in MIP-1 alpha gene expression. These observations indicate that nicotine can induce MIP-1 alpha mRNA expression and protein synthesis in RAM cells, mediating, at least in part, via the generation of ROS. In addition, the increase in MIP-1 alpha mRNA level involves, both transcriptional activation and post-transcriptional stabilization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Chemokine CCL4
  • Gene Expression Regulation / drug effects
  • Half-Life
  • Kinetics
  • Macrophage Inflammatory Proteins / genetics*
  • Macrophages, Alveolar / drug effects
  • Macrophages, Alveolar / immunology*
  • Molecular Weight
  • Nicotine / pharmacology*
  • RNA, Messenger / genetics
  • Rats
  • Transcription, Genetic / drug effects*
  • Transcriptional Activation / drug effects

Substances

  • Chemokine CCL4
  • Macrophage Inflammatory Proteins
  • RNA, Messenger
  • Nicotine