Purpose: Imaging of breast tumors and various breast tissues using magnetic resonance (MR) elastography (MRE) to explore the potential of elasticity as a new parameter for the diagnosis of breast lesions.
Methods: Low-frequency mechanical waves are transmitted into breast tissue by means of an oscillator. The local characteristics of the mechanical wave are determined by the underlying elastic properties of the tissue. Theses waves can be displayed by means of a motion-sensitive spin-echo MR sequence within the phase of the MR image. Elasticity reconstruction is performed on the basis of 8 "snapshots" of each wave within the three spatial directions. We performed in-vivo measurements in 15 female patients with malignant tumors of the breast, 5 patients with benign breast tumors, and 15 healthy volunteers.
Results: Malignant invasive breast tumors documented the highest values of elasticity with a median of 15.9 kPa and a wide range of stiffnesses between 8 and 28 kPa. In contrast, benign breast lesions represented low values of elasticity, which were significantly different from malignant breast tumors (median elasticity: 7.0 kPa; p = 0.0012). This was comparable to the stiffest tissue areas in healthy volunteers (median elasticity 7.0 kPa), whereas breast parenchyma (median: 2.5 kPa) and fatty breast tissue (median: 1.7 kPa) showed the lowest values of elasticity. Two invasive ductal carcinomas had elasticity values of 8 kPa and two stiff parenchyma areas in healthy volunteers had elasticities of 13 and 15 kPa. These lesions could not be differentiated by their elasticity.
Conclusion: We conclude that MRE is a promising new imaging modality with the capability to assess the viscoelastic properties of breast tumors and the surrounding tissues. However, from our preliminary results in a small number of patients it is obvious that there is an overlap in the elasticity ranges of soft malignant tumors and stiff benign lesions.