Monocytes/macrophages undergo apoptosis and are in contact with apoptotic cells both in vitro and in vivo. The data show that monocytes undergoing spontaneous apoptosis in vitro change their cytokine production profile. We demonstrate that the lipopolysaccharide (LPS)-induced production of interleukin-10 (IL-10) is up-regulated, while production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) is either not affected or reduced. These differences seen both at the protein and mRNA level directly correlate with the appearance of apoptotic cells in the culture. Flow cytometry analysis using double staining, surface with annexin V and intracellular with anti-IL-10, suggested that annexin V-negative monocytes are the predominant source of IL-10. Analysis of sorted populations of monocytes indicated that the increase in IL-10 synthesis appears to result from direct interactions between non-apoptotic and apoptotic cells at the time of stimulation. Also non-apoptotic, freshly isolated monocytes produced more IL-10 upon stimulation with LPS, Staphylococcus aureus or zymosan when apoptotic neutrophils were added to the culture. In contrast, monocyte-derived macrophages did not produce more IL-10 in the presence of apoptotic neutrophils. Finally, we found that the presence of apoptotic monocytes in the culture may influence specific immune responses. The data show that in the presence of annexin V-positive monocytes CD4-positive memory T cells produce less IFN-gamma upon stimulation with purified protein derivative of tuberculin, which could be partially reversed by anti-IL-10 neutralizing antibodies. We conclude that these findings might illustrate the mechanisms operating within an inflammatory site and play an important immunoregulatory role during the resolution of inflammation and specific immune responses.