The mouse serves as a valuable model for treatment leading to the prevention and therapy of inner ear disease. Transgenic correction of genetic inner ear disease in mice may help develop treatment for human genetic inner ear disease. In mutations involving hair cells (HCs) or supporting cells (SCs), it is necessary to insert the wild-type transgenes directly into these cells. We used inner ear explants to characterize the transgenic expression using adenovirus-mediated reporter genes (bacterial lacZ). The variable parameters were the age of the explants (P1-P5), the type of vector (first and advanced generation adenovirus) and the genotype of the mouse (wild-type versus shaker-2 mutant). Transduction of cochlear HCs was detected at P1 and in some of the P3 cochleae. Low efficiency transduction of SCs was observed in P1 explants, but the efficiency increased with age and reached high levels at P5. The pattern of transduction was similar regardless of the genotype and the type of vector used. The data demonstrate that differentiating HCs and SCs in mouse explants can be transduced by adenovirus vectors, suggesting that cultures of mouse ears are a valuable model for developing inner ear gene therapy protocols.