In a previous study, moxifloxacin was shown to ameliorate immunosuppression and enhance cytokine production in several tissues, including the lungs of cyclophosphamide-injected mice. We examined here the effects of moxifloxacin on Candida albicans lung infection in cyclophosphamide-injected mice. Mice were injected on day 0 with 250 mg of cyclophosphamide/kg, and on days 1 to 4 they were given moxifloxacin at 22.5 mg/kg/day compared to controls given ceftazidime at 75 mg/kg/day or saline. On day 6, C. albicans (10 7 CFU/mouse) was inoculated intratracheally, and animals were observed for the development of bronchopneumonia, weight loss, mortality, the presence of C. albicans, and lung cytokine production. Histopathology on day 10 postinoculation revealed bronchopneumonia in 50, 67, and 0% of saline-, ceftazidime-, and moxifloxacin-treated mice, respectively (P < 0.05). The mortality rates were 28, 17, and 5%, respectively (P < 0.05), and weight loss occurred at 20, 32, and 0%, respectively (P < 0.05). By day 15, C. albicans was eliminated from all moxifloxacin-treated mice but was still isolated from lung homogenates of 50 to 60% of the saline- and ceftazidime-treated groups. Among the cytokines tested on days 0 to 15, we found an increased production of tumor necrosis factor alpha, KC (functional interleukin-8), and gamma interferon in the lungs of ceftazidime- and saline-treated controls compared to the moxifloxacin pretreatment that abolished their secretion. In conclusion, moxifloxacin protected cyclophosphamide-injected mice from C. albicans-induced lung infection and significantly reduced pneumonia, weight loss, and mortality despite the lack of direct antifungal activity. This is most likely due to an immunomodulating activity conferred by moxifloxacin, as shown in this model and in our previous studies. Its potential protective role should be studied in patients undergoing chemotherapy and immune suppression.