Exposure of CV-1P cells to hypoxic conditions causes cell proliferation inhibition concomitant with the accumulation of pRb in the hypophosphorylated, growth suppressive form. This is in part due to inhibition of pRb-directed cdk4 and cdk2 activity. In this study we attempted to elucidate the mechanism by which cdk4 is inactivated under hypoxic conditions. After 18 h of hypoxia, CV-1P cells are inhibited from progressing from G(1) phase into the S phase of the cell cycle. This occurs in conjunction with dephosphorylation of serine-795, which is a putative substrate of cdk4. The amounts of cdk4, cdk6, and the D type cyclins are not affected by 18 h of hypoxia. The levels of cdki p16, p18, p19, and p57 under aerobic or hypoxic conditions were analyzed and although the levels of most cdki are unaffected by hypoxic conditions, the level of p16 increases significantly by 18 h of hypoxia. The mechanism by which cdk4 activity is inhibited under hypoxic conditions may be mediated through p16 association with cdk4. Immunoprecipitation analysis shows that p16 binds to cdk4 under hypoxic conditions but does not in cells maintained under aerobic conditions. Thus p16 may be involved in hypoxia-induced growth inhibition.