Objective: To investigate the role of a potential diabetes-related mitochondrial region, which includes two previously reported mutations, 3243A-->G and 3316G-->A, in Chinese patients with adult-onset type 2 diabetes.
Methods: A total of 277 patients and 241 normal subjects were recruited for the study. Mitochondrial nt 3116 - 3353, which spans the 16S rRNA, tRNA(leu(UUR)) and the NADH dehydrogenase 1 gene, were detected using polymerase chain reaction (PCR), direct DNA sequencing, PCR-restriction fragment length polymorphism and allele-specific PCR. Variants were analyzed by two-tailed Fisher exact test. The function of the variants in 16S rRNA were predicted for minimal free energy secondary structures by RNA folding software mfold version 3.
Results: Four homoplasmic nucleotide substitutions were observed, 3200T-->C, 3206C-->T, 3290T-->C and 3316G-->A. Only the 3200T-->C mutation is present in the diabetic population and absent in the control population. No statistically significant associations were found between the other three variants and type 2 diabetes. The 3200T-->C and 3206C-->T nucleotide substitutions located in 16S rRNA are novel variants. The 3200T-->C caused a great alteration in the minimal free energy secondary structure model while the 3206C-->T altered normal 16S rRNA structure little.
Conclusions: The results suggest that the 3200T-->C mutation is linked to the development of type 2 diabetes, but that the other observed mutations are neutral. In contrast to the Japanese studies, the 3316G-->A does not appear to be related to type 2 diabetes.