Most of the nuclear encoded mitochondrial precursor proteins contain an N-terminal extension called the presequence that carries targeting information and that is cleaved off after import into mitochondria. The presequences are amphiphilic, positively charged, membrane-interacting peptides with a propensity to form alpha-helices. Here we have investigated the proteolysis of the presequences that have been cleaved off inside mitochondria. A presequence derived from the overexpressed F(1)beta subunit of the ATP synthase and specific synthetic fluorescent peptides (Pep Tag Protease assay) have been shown to undergo rapid degradation catalyzed by a matrix located protease. We have developed a three-step chromatographic procedure including affinity and anion exchange chromatography for isolation of the protease from potato tuber mitochondria. Two-dimensional gel electrophoresis of the isolated proteolytically active fraction followed by electrospray ionization-mass spectrometry/mass spectrometry and data base searches allowed identification of the presequence peptide-degrading protease in Arabidopsis thaliana data base as a novel mitochondrial metalloendoprotease with a molecular mass of 105 kDa. The identified metalloprotease contains an inverted zinc-binding motif and belongs to the pitrilysin family.