Recurrent disease remains a major obstacle to cure after allogeneic transplantation. Various methods have been developed to detect minimal residual disease (MRD) after transplantation to identify patients at risk for relapse. Chimerism tests differentiate recipient and donor cells and are used to identify MRD when there are no other disease-specific markers. The detection of MRD does not always correlate with relapse risk. Chimerism testing may also identify normal hematopoietic cells or other cells not contributing to relapse. In this study we report our initial experience with a novel system that provides combined morphological and cytogenetical analysis on the same cells. This system allows rapid automatic scanning of a large number of cells, thus increasing the sensitivity of detection of small recipient population. The clinical significance of MRD detection is improved by identifying the morphology of recipient cells. Identification of recipient characteristics within blasts predicts overt relapse in leukemia patients and precedes it by a few weeks to months. Identification within mature hematopoietic cells may not be closely associated with relapse. The system also allows chimerism testing after sex-mismatched transplants, within cellular subsets, with no need for sorting of cells. The system merits further study in larger scale trials.