The binding sites of nicotinic acetylcholine receptor (nAChR) subtypes were measured in the parietal cortex and hippocampus of transgenic mice carrying mutant human APPswe and presenilin 1 (PS1) genes (APPswe/PS1 mice) between the ages of 3 weeks and 17 months. Soluble and insoluble beta-amyloid peptide (Abeta1-40 and Abeta1-42) levels were investigated in parallel. No significant differences in binding sites of [(3)H]cytisine (alpha4beta2 nAChRs) and [(125)I]alpha-bungarotoxin (alpha7 nAChRs) were observed in APPswe/PS1 mice and wild-type control mice at any age studied. At three weeks of age, soluble Abeta1-40 was detectable in the parietal cortex and hippocampus of APPswe/PS1 mice, whereas Abeta1-42 was detectable from 12 months of age. A pronounced increase in insoluble Abeta1-42 was observed between 3 weeks and 17 months compared with that of insoluble Abeta1-40 in both brain regions, indicating a shift that favors accumulation of Abeta1-42 in older APPswe/PS1 mice. The findings indicate that elevated Abeta levels in the brains of APPswe/PS1 mice do not alter the number of alpha4beta2 and alpha7 receptors, the two major brain nAChR subtypes.