The mechanism of ATP-induced long-term potentiation (LTP) was studied pharmacologically using guinea-pig hippocampal slices. LTP, induced in CA1 neurons by 10 min application of 10 microM ATP, was blocked by co-application of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonovalerate (5 or 50 microM). In ATP-induced LTP, the delivery of test synaptic inputs (once every 20 s) to CA1 neurons could be replaced by co-application of NMDA (100 nM) during ATP perfusion. These results suggest that, in CA1 neurons, a co-operative effect between extracellular ATP and activation of NMDA receptors is required to trigger the process involved in ATP-induced LTP. In addition, ATP-induced LTP was blocked by co-application of an ecto-protein kinase inhibitor, K-252b (40 or 200 nM), whereas a P2X purinoceptor antagonist, pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid 4-sodium (50 microM), or a P2Y purinoceptor antagonist, basilen blue (10 microM), had no effect.The results of the present study, therefore, indicate that the mechanisms of ATP-induced LTP involve the modulation of NMDA receptors/Ca(2+) channels and the phosphorylation of extracellular domains of synaptic membrane proteins, one of which could be the NMDA receptor/Ca(2+) channel.