Tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF), expressed in normal astrocytes, were used in combination for the treatment of Parkinson's disease (PD) symptoms in a rat model. Normal neonatal rat astrocytes were co-transfected with a vector expressing BDNF (AAVBDNF) and a retroviral vector expressing TH (termed TH-BDNF-DA(+) cells), and then implanted into the striatum of PD rats induced by 6-hydroxydopamine. TH-BDNF-DA(+) cells compensated for a severe insufficiency of endogenous dopaminergic neurons in the PD rats, resulting in a significant improvement of PD symptoms. The decrease in the rotational rate of PD rats implanted with TH-BDNF-DA(+) cells was more marked than that in PD rats implanted with normal astrocytes expressing either TH or BDNF alone (termed TH(+) and BDNF(+) cells, P<0.01 and 0.001, respectively), and suggested a synergistic effect between TH and BDNF. In contrast, the rotational rate was not altered from the baseline in PD rats without treatment or implanted with parental rat astrocytes alone (P>0.05). BDNF protected the dopaminergic neurons from apoptosis induced by 6-hydroxydopamine, and significantly increased the long-term survival of TH-positive cells in the striatum. Our data indicate that the combined use of TH and BDNF has a synergistic therapeutic effect, and is more efficient for the treatment of PD than a single gene therapy using either TH or BDNF alone.