By following peroxiredoxin I (Prx I)-dependent NADPH oxidation spectrophotometrically, we observed that Prx I activity decreased gradually with time. The decay in activity was coincident with the conversion of Prx I to a more acidic species as assessed by two-dimensional gel electrophoresis. Mass spectral analysis and studies with Cys mutants determined that this shift in pI was due to selective oxidation of the catalytic site Cys(51)-SH to Cys(51)-SO(2)H. Thus, Cys(51)-SOH generated as an intermediate during catalysis appeared to undergo occasional further oxidation to Cys(51)-SO(2)H, which cannot be reversed by thioredoxin. The presence of H(2)O(2) alone was not sufficient to cause oxidation of Cys(51) to Cys(51)-SO(2)H. Rather, the presence of complete catalytic components (H(2)O(2), thioredoxin, thioredoxin reductase, and NADPH) was necessary, indicating that such hyperoxidation occurs only when Prx I is engaged in the catalytic cycle. Likewise, hyperoxidation of Cys(172)/Ser(172) mutant Prx I required not only H(2)O(2), but also a catalysis-supporting thiol (dithiothreitol). Kinetic analysis of Prx I inactivation in the presence of a low steady-state level (<1 microm) of H(2)O(2) indicated that Prx I was hyperoxidized at a rate of 0.072% per turnover at 30 degrees C. Hyperoxidation of Prx I was also detected in HeLa cells treated with H(2)O(2).