Properties of GABA(A) receptor-mediated unitary inhibitory postsynaptic currents (uIPSCs) in pyramidal (P) cells, evoked by fast spiking (FS) and low-threshold spike (LTS) subtypes of interneurons in layer V of rat visual cortex slices were examined using dual whole cell recordings. uIPSCs evoked by FS cells were larger and faster rising than those evoked by LTS cells, consistent with the known primary projections of FS and LTS cell axons to perisomatic and distal dendritic areas of layer V pyramidal cells, respectively, and the resulting electrotonic attenuation for LTS-P synaptic events. Unexpectedly, the decay time constants for LTS-P and FS-P uIPSCs were not significantly different. Modeling results were consistent with differences in the underlying GABA(A) receptor-mediated conductance at LTS-P and FS-P synapses. Paired-pulse depression (PPD), present at both synapses, was associated with an increase in failure rate and a decrease in coefficient of variation, indicating that presynaptic mechanisms were involved. Furthermore, the second and first uIPSC amplitudes during PPD were not inversely correlated, suggesting that PPD at both synapses is independent of previous release and might not result from depletion of the releasable pool of synaptic vesicles. Short, 20-Hz trains of action potentials in presynaptic interneurons evoked trains of uIPSCs with exponentially decreasing amplitudes at both FS-P and LTS-P synapses. FS-P uIPSC amplitudes declined more slowly than those of LTS-P uIPSCs. Thus FS and LTS cells, with their differences in firing properties, synaptic connectivity with layer V P cells, and short-term synaptic dynamics, might play distinct roles in regulating the input-output relationship of the P cells.