We investigated the effect of thyroid hormone (TH) receptor (TR)alpha and -beta isoforms in TH action in the heart. Noninvasive echocardiographic measurements were made in mice homozygous for disruption of TRalpha (TRalpha(0/0)) or TRbeta (TRbeta(-/-)). Mice were studied at baseline, 4 wk after TH deprivation (using a low-iodine diet containing propylthiouracil), and after 4-wk treatment with TH. Baseline heart rates (HR) were similar in wild-type (WT) and TRalpha(0/0) mice but were greater in TRbeta(-/-) mice. With TH deprivation, HR decreased 49% in WT and 37% in TRbeta(-/-) mice and decreased only 5% in TRalpha(0/0) mice from baseline, whereas HR increased in all genotypes with TH treatment. Cardiac output (CO) and cardiac index (CI) in WT mice decreased (-31 and -32%, respectively) with TH deprivation and increased (+69 and +35%, respectively) with TH treatment. The effects of CO and CI were blunted with TH withdrawal in both TRalpha(0/0) (+8 and -2%, respectively) and TRbeta(-/-) mice (-17 and -18%, respectively). Treatment with TH resulted in a 64% increase in LV mass in WT and a 44% increase in TRalpha(0/0) mice but only a 6% increase in TRbeta(-/-) mice (ANOVA P < 0.05). Taken together, these data suggest that TRalpha and TRbeta play different roles in the physiology of TH action on the heart.