Escherichia coli K1 traversal of the human brain microvascular endothelial cells (HBMEC) that constitute the blood-brain barrier (BBB) is a complex process involving E. coli adherence to and invasion of HBMEC. In this study, we demonstrated that human transforming growth factor-beta-1 (TGF-beta1) increases E. coli K1 adherence, invasion, and transcytosis in HBMEC. In addition, TGF-beta1 increases RhoA activation and enhances actin condensation in HBMEC. We have previously shown that E. coli K1 invasion of HBMEC requires phosphatidylinositol-3 kinase (PI3K) and RhoA activation. TGF-beta1 increases E. coli K1 invasion in PI3K dominant-negative HBMEC, but not in RhoA dominant-negative HBMEC, indicating that TGF-beta1-mediated increase in E. coli K1 invasion is RhoA-dependent, but not PI3K-dependent. Our findings suggest that TGF-beta1 treatment of HBMEC increases E. coli K1 adherence, invasion, and transcytosis, which are probably dependent on RhoA.